

Узел маршрутизации сигнальных данных

# **STP**

# Установка и настройка системы

Версия 2.8

Руководство администратора

# Содержание

| О компании Bercut                                   | 3 |
|-----------------------------------------------------|---|
| Назначение документа                                | 5 |
| Термины и определения                               | 6 |
| 1. Платформа Expera                                 | 9 |
| 1.1. Взаимодействие SAL- и SEL-уровней1             | 0 |
| 1.2. Используемые AFE                               | 1 |
| 2. Структура STP1                                   | 6 |
| 3. Функциональные возможности                       | 7 |
| 3.1. Взаимодействие STP с внешними системами        | 7 |
| 3.2. Маршрутизация сообщений и трансляция адресов 1 | 7 |
| 3.2.1. Маршрутизация сообщений1                     | 7 |
| 3.2.2. Формирование групп получателей сообщений     | 9 |
| 3.2.3. Формирование групп источников сообщений2     | 2 |
| 3.3. Распределение сообщений в подсистеме           | 3 |
| 3.4. Параллельная обработка сообщений2              | 4 |
| 4. Установка STP2                                   | 6 |
| 5. Настройка STP                                    | 7 |
| 5.1. Настройка провайдеров и пользователей          | 7 |
| 5.2. Настройка подключений2                         | 8 |
| 5.2.1. Настройка М2РА и МТР32                       | 8 |
| 5.2.2. Настройка M3UA2                              | 9 |
| 5.3. Настройка маршрутизации 2                      | 9 |
| 5.3.1. Настройка групп получателей сообщений        | 0 |
| 5.3.2. Настройка групп источников сообщений         | 0 |
| Источники информации                                | 1 |
| История изменений                                   | 2 |

# О компании Bercut

Bercut — мировой поставщик решений в области ИТ, который предлагает уникальный подход к развитию и управлению услугами совместно с оператором и абонентом.

### Техническая поддержка

Компания Bercut предлагает заказчикам полную техническую поддержку продуктов.

Bercut осуществляет гарантийное и послегарантийное сопровождение поставляемых комплексов по отдельному договору.

При возникновении в процессе эксплуатации ситуаций, не указанных в пакете эксплуатационной документации, пользователь может обратиться в группу технической поддержки компании Bercut одним из указанных ниже способов:

- на сайте <a href="https://support.bercut.com">https://support.bercut.com</a> создать заявку (раздел Заявки);
- отправить электронное письмо на адрес support@bercut.com;
- позвонить по телефону +7 (812) 327-3231.

### Уведомление об авторских правах

Компания Bercut обладает исключительным правом на данные материалы.

Не допускается полностью или частично воспроизводить или передавать данный документ в какой-либо форме, любым способом и в любом формате, электронными или механическими средствами, включая фотокопирование, запись и хранение в системе базы данных, не получив предварительное согласие в письменном виде от компании Bercut.

## Обратная связь

Уважаемый читатель!

Наша цель — улучшение документации с точки зрения удобства ее использования, полноты и понятности изложенного материала. Свои вопросы, предложения, замечания об ошибках, неясности в изложении, нехватке примеров вы можете передать одним из указанных ниже способов:

- на сайте <a href="https://support.bercut.com">https://support.bercut.com</a> создать заявку (раздел Заявки);
- отправить электронное письмо на адрес techwriters@bercut.com.

### Пожалуйста, укажите:

- версию системы;
- название документа;
- номер версии документа;
- по возможности главу, раздел и страницу, к которым относятся ваши замечания.

После исправления текста по замечаниям мы известим вас о выходе новой версии документа.

**Примечание.** В соответствии с положениями политики конфиденциальности мы принимаем обратную связь от компаний, с которыми установлены соответствующие договорные обязательства. Если вы являетесь третьей стороной, пожалуйста, обратитесь к представителям компании, с которой у вас заключен договор.

# Назначение документа

В документе представлены:

- общие сведения о платформе Expera;
- общие сведения об узле STP;
- информация о взаимодействии узла STP с внешними системами.

Документ предназначен для администраторов узла STP.

# Термины и определения

### **ANSI**

American National Standard Institute. Американский национальный институт стандартов.

### **ASE**

Application Service Element. Прикладной сервисный элемент.

### **ATOMS**

Administration Tools and Operation Monitoring System. Система удаленного администрирования и мониторинга. Предназначена для управления приложениями Bercut, наблюдения за ними в режиме реального времени и оповещения об авариях и сбоях в работе приложений.

### **ATLAS**

Administration Tools for Applications and Services. Система Layer администрирования И мониторинга приложений И бизнес-процессов. Расширенная версия системы ATOMS, предназначенная для управления компонентами и бизнес-процессами Platform v3, для наблюдения за ними в режиме реального времени и оповещения об авариях и сбоях, возникающих в работе приложений.

### **BCD**

Binary-Coded Decimal. Формат представления адресной информации. Двоично-десятичное число.

#### **BDDM**

Bercut Device Driver Manager. Менеджер драйверов устройств, разработанный компанией Bercut.

### **CDMA**

Code-Division Multiple Access. Множественный доступ с кодовым разделением каналов. Цифровой стандарт сотовой связи, который позволяет абонентским терминалам использовать общую полосу частот, но разную кодовую модуляцию.

### **DAMPS**

Digital Advanced Mobile Phone Service. Цифровой стандарт мобильной связи в диапазоне частот от 400 до 890 МГц.

#### **DBS**

Data Base Server. Узел хранения данных для услуг в системе интеллектуальных услуг. Располагается на уровне SDL.

### DPC

Destination Point Code. Код пункта назначения в сети SS7.

## **Expera**

Платформа интеллектуальных сервисов компании Bercut. Обеспечивает предоставление интеллектуальных услуг абонентам мобильных и фиксированных сетей связи.

### FF

Firmware Framework. Программное окружение, функционирующее в сервере и позволяющее вынести часть функций контроллера на сервер.

#### **FTLB**

Fault Tolerance and Load Balancing. Компонент, который обеспечивает отказоустойчивость и распределение нагрузки для поддержки соединений между элементами SAL- и SEL-уровней.

### **GFE**

Global Functional Element. Базовый программный компонент, агрегирующий распределенные программные компоненты функций доступа и обеспечивающий единую точку доступа к ресурсам и функциям телекоммуникационной сети для интеллектуальных сервисов.

### GT

Global Title. Глобальный заголовок, расширяет возможности адресации SCCP-сообщений. Для использования GT необходима функция трансляции.

### HLR

Home Location Register. Реестр местоположения в домашней сети — централизованная база данных, которая содержит информацию о каждом абоненте сети.

### ITU-T

International Telecommunications Union, Telecommunication Standardization Sector. Сектор стандартизации телекоммуникаций Международного Союза Электросвязи (МСЭ).

### **MSC**

Mobile Switching Center. Центр коммутации мобильной связи. Ключевой элемент *базовой сети*, обеспечивающий функции управления сетью.

### **MIB**

Management Information Base. База управляющей информации. MIB содержит настройки для приложений и бизнес-процессов Bercut, выполняющихся на сервере. Для доступа к MIB используется внутренний протокол.

### **MTP**

Message Transfer Part. Подсистема передачи сообщений в системе сигнализации *SS7*.

#### NP

Numbering plan. План нумерации.

### SAL

Service Access Layer. Уровень платформы интеллектуальных услуг, элементы которого предоставляют доступ к телекоммуникационной сети оператора.

### **SCCP**

Signalling Connection Control Part. Подсистема управления соединениями сигнализации. Протокол связи в сети ОКС-7, обеспечивающий передачу пакетов между любыми двумя пунктами сигнализации. Действует на основе протокола МТР, образуя вместе с ним сеть передачи данных с коммутацией пакетов, на основе которой работают все остальные протоколы ОКС-7: INAP, ISUP, MAP, OMAP, TCAP и TUP.

### SCP

Service Control Point. Элемент интеллектуальной сети. Узел управления услугами. Предоставляет возможности для реализации программной среды выполнения

логики телекоммуникационных интеллектуальных услуг и взаимодействия с другими элементами сети.

### **SDL**

Service Data Layer. Уровень платформы интеллектуальных услуг, элементы которого обеспечивают хранение данных, используемых при выполнении логики услуг.

### **SDP**

Service Data Point. Узел хранения данных услуг. Предоставляет доступ к системе, отвечающей за хранение и управление профилями абонентов.

### SEL

Service Execution Layer. Уровень платформы интеллектуальных услуг, элементы которого обеспечивают выполнение логики услуг.

#### **SES**

Service Execution Server. Сервер выполнения логики услуг.

### **SMSC**

Short Message Service Centre. Система обработки коротких сообщений. Предоставляет абонентам мобильных сетей возможность обмена блоками текстовой информации друг с другом и с сервисами оператора, работающими по протоколу SMPP.

### **SRP**

Specialized Resource Point. Узел доступа для предоставления IVR-услуг в телефонной сети.

### **SS7**

Signaling System 7. Общеканальная система сигнализации №7 (ОКС-7). Стек протоколов, с помощью которых элементы телефонной сети общего пользования могут обмениваться информацией друг с другом через цифровую сеть сигнализации.

### **STP**

Signaling Transfer Point. Элемент интеллектуальной сети. Узел маршрутизации сигнальных данных из сети SS7 между локальными подсистемами системы интеллектуальных услуг (IN).

### **TCAP**

Transaction Capability Application Part. Прикладная подсистема управления возможностями транзакций в сети сигнализации ОКС-7.

### **UDAG**

Universal Data Access Gateway. Узел универсального доступа к базе данных.

### **USSD** Centre

Центр обслуживания USSD-запросов, позволяющий организовать высокоскоростное интерактивное взаимодействие между абонентом и системой в режиме реального времени.

### Базовая сеть

Ключевой компонент сотовой сети оператора связи стандарта GSM, который обеспечивает предоставление и координацию основных сервисов: голосовые вызовы, SMS-сообщения и передача данных.

# 1. Платформа Expera

Архитектура платформы Expera включает в себя три уровня: SAL, SEL и SDL.

Expera обеспечивает доступ к телекоммуникационной сети для различных систем интеллектуальных услуг. Архитектура платформы традиционно представлена в виде трех уровней. Каждый из данных уровней является горизонтально масштабируемым.

На первом уровне — SAL — располагается платформа доступа к телекоммуникационной сети. На уровне SEL располагаются программные компоненты, обеспечивающие выполнение логики услуг: SCP [3], SMSC, USSDC и другие. На уровне SDL располагаются программные компоненты для хранения данных, используемых при выполнении логики услуг.

На каждом из уровней системы располагаются соответствующие серверы:

- SAS-серверы на уровне SAL;
- SES-серверы на уровне SEL;
- DBS-серверы на уровне SDL.

Также реализован уровень контроля и управления платформой — SML (на схеме отсутствует).

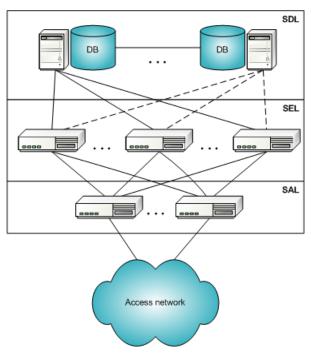



Рис. 1. Схема платформы интеллектуальных сервисов Ехрега

Распределение серверов по отдельным уровням необходимо для реализации единых механизмов масштабирования и резервирования систем IN-услуг. Только между элементами разных уровней существуют транспортные связи, которые поддерживают возможность автоматического замещения неисправного сервера исправным (Fault Tolerance) и распределения нагрузки (Load Balancing).

## 1.1. Взаимодействие SAL- и SEL-уровней

При построении системы интеллектуальных услуг применяется масштабирование и резервирование компонентов SAL-, SEL- и SDL-уровней. Это обеспечивает возможность:

- автоматического переключения с неисправного сервера на исправный (Fault Tolerance);
- распределения нагрузки (Load Balancing).

Для реализации данных возможностей используется компонент FTLB — библиотека, которая устанавливается вместе с конкретным компонентом (приложением). Схема приведена на рисунке.

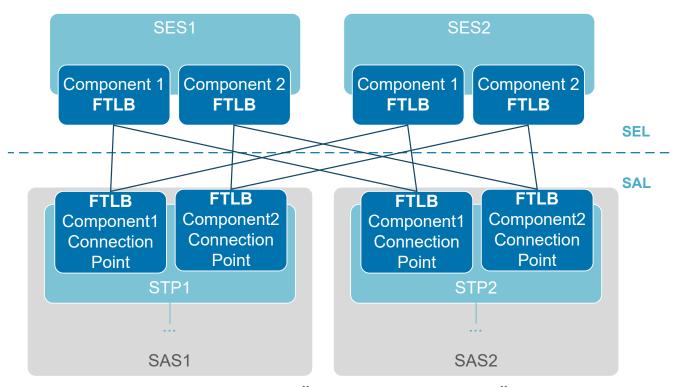



Рис. 2. Взаимодействие SAL- и SEL-уровней

На схеме отражено взаимодействие компонентов SAL- и SEL-уровней: на SAL-уровне и на SEL-уровне находится по два соответствующих сервера, а на каждом SES-сервере располагается два компонента.

С помощью FTLB можно реализовать один из двух режимов установления соединения между уровнями:

- FT (Fault Tolerance). При работе в режиме FT рабочим является только один из серверов на каждом уровне сервер с наивысшим приоритетом, если такой существует, или же первый из подключившихся серверов. При выходе из строя рабочего сервера таковым становится сервер с приоритетом, следующим по старшинству. Когда наиболее приоритетный сервер включается в работу, то ему вновь передаются функции рабочего сервера.
  - **Примечание.** Если приоритеты у оставшихся серверов одинаковые рабочим становится первый из подключившихся серверов.

• LB (Load Balancing). При работе в режиме LB одновременно работают все имеющиеся на данном уровне исправные серверы.

При распределении сообщений в режиме Load Balancing между серверами могут использоваться различные стратегии:

- По кругу. FTLB по очереди посылает данные на каждый сервер без учета их приоритетов;
- По объему переданной информации. FTLB выбирает сервер, на который было отправлено меньше всего данных за последние 5 секунд. Кроме того, если серверы имеют разные приоритеты, то координатор будет сравнивать значения нагрузки на каналы, деленные на их приоритеты. Нулевой приоритет соответствует значению '1';
- Сервер с наивысшим приоритетом. FTLB каждый раз выбирает наиболее приоритетный сервер. Среди каналов с одинаковым приоритетом выбирается первый из подключившихся.
- Режим резервирования n+1. В нормальном режиме нагрузка идет на n серверов с большим приоритетом. При этом сервер с меньшим приоритетом находится в резерве. При выходе из строя одного из n серверов нагрузка с него переносится на резервный. При восстановлении, нагрузка снимается с резервного и возвращается на восстановившийся сервер.

При выходе из строя одного из серверов его нагрузка перераспределяется между доступными серверами данного уровня в соответствии с их приоритетами. Когда неисправный сервер возвращается в рабочее состояние, то он принимает на себя часть общей нагрузки в соответствии со своим приоритетом и приоритетами других серверов своего уровня.

Компонент FTLB включает также механизм Alive Request, который обеспечивает контроль работоспособности канала связи STP с подсистемой.

Логика работы механизма Alive Request:

- Если по определенному каналу в течение 10 секунд не передавались данные, то компоненты FTLB на обеих сторонах данного канала, начинают обмениваться пакетами AliveRequest и AliveConfirmation с интервалом 10 секунд.
- Если FTLB, который отправил пакет *AliveRequest*, не получает подтверждения *AliveConfirmation* в течение 10 секунд, то соединение с не ответившим узлом разрывается.

Настройки FTLB находятся в дереве MIB в группах STP/Security/Users.

**і Примечание.** Распределением нагрузки между однотипными элементами SEL-уровня занимается один компонент FTLB. Поэтому настройки FTLB задаются в  $rpynne\ STP/Security/Users\ для\ группы\ однотипных\ элементов, а не для каждого из однотипных элементов.$ 

# 1.2. Используемые АFE

Для обеспечения доступа к телекоммуникационной сети и аппаратным ресурсам аппаратных контроллеров используются AFE — функциональные элементы доступа.

Как правило, AFE, размещаются в аппаратных контроллерах. Также некоторые AFE могут быть вынесены на SAS-сервер с целью обеспечения большей производительности и гибкости решения.

Адресация функциональных сущностей АFE выполняется по параметрам:

- GID (Global Identifier) глобальный идентификатор функционального элемента, определяющий его принадлежность к определенной функциональной группе. GID определяет протокол доступа к данному AFE.
- LID (Local Identifier) локальный идентификатор AFE, определяющий его номер в группе экземпляров AFE в пределах одного аппаратного контроллера.
- **Примечание.** В одном аппаратном контроллере могут размещаться несколько функциональных сущностей (экземпляров) одного AFE.

Набор AFE, функционирующих в устройстве, зависит от типа устройства и загруженного программного обеспечения.

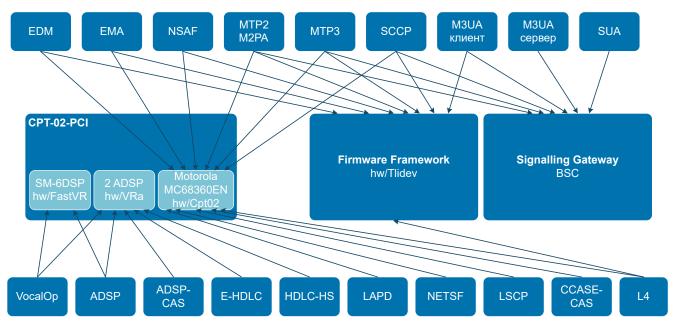



Рис. 3. Возможности распределения АFE по основным компонентам (устройствам)

В таблице ниже приводится перечень AFE, используемых для организации доступа к сети на базе контроллера CPT-02-PCI.

| AFE   | GID | Описание                                                                                                                                                                                                                                        |
|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EDM   | 0   | Embedded Driver Manager. Совместно с BDDM осуществляет связь между элементами GFE и AFE и реализует функции управления. Также реализует функции звена передачи данных MTP1. Наличие данного AFE обязательно.                                    |
| EMA   | 1   | Embedded MIB Agent. Совместно с BDDM обеспечивает доступ элементов AFE $\kappa$ функциям ATLAS [12]. Наличие данного AFE обязательно.                                                                                                           |
| LSCP  | 4   | Local Switching Control Protocol. Обеспечивает доступ к локальной коммутационной матрице контроллера СРТ-PCI.                                                                                                                                   |
| NETSF | 5   | МТР2 Network Sniffer. Предназначен для записи бинарных трейсов в лог MIB Explorer [13]. Записывает все проходящие через него сообщения МТР2 в трейс. Экземпляр AFE NETSF создается автоматически при создании экземпляра МТР2—нет необходимости |

| AFE       | GID | Описание                                                                                                                                                                            |
|-----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |     | прописывать его в EDM, но при этом требуется указать EMA-таблицу с настройками для GID=5.                                                                                           |
| LAPD      | 10  | Реализует протокол доступа к D-каналу — каналу сигнализации.                                                                                                                        |
| MTP2      | 11  | Message Transfer Part level 2. Реализует функции сигнального звена подсистемы передачи сообщений МТР стека ОКС-7 ITU (Q.701 — Q.708).                                               |
| MTP2      | 12  | Message Transfer Part level 3. Реализует уровень 3 подсистемы передачи сообщений МТР стека ОКС-7 (ITU Q.701 — Q.708).                                                               |
| L4        | 13  | Bercut Message Transfer Part Level 3 User Adaptation<br>Layer Protocol (MTP3-UAP). Транслирует сообщения<br>между User Part и MTP3. Используется для<br>взаимодействия ISUP с MTP3. |
| SCCP      | 14  | Signaling Connection Control Part. Реализует подсистему управления соединениями сигнализации стека ОКС-7 (ITU Q.711 — Q.714).                                                       |
| NSAF      | 15  | Network Services Access Function. Реализует интерфейс, обеспечивающий доступ к сети ОКС-7 через SCCP (взаимодействие SCCP с STP).                                                   |
| CCAFE-CAS | 18  | Call Control Access Function Element for Channel Associated Signaling. Выполняет функции преобразования протокола CAS-сигнализации в протокол Bercut ACCP.                          |

Следующие AFE могут быть реализованы для DSP-устройств — VR на контроллере и Fast-VR на модуле SM6-DSP:

| AFE      | GID | Описание                                                                                                                                                                                                  |
|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VocalOp  | 112 | Voice Resource Subsystem. Используется для логического подключения к подсистеме голосовых операций. Данный AFE предназначен для ADSP:  установленных на контроллере; установленных на модуле SM-6DSP.     |
| ADSP     | 113 | ADSP-2189M Subsystem. Используется для конфигурации ADSP-2189M. Данный AFE предназначен для ADSP:  установленных на контроллере; установленных на модуле SM-6DSP.                                         |
| ADSP-CAS | 115 | Реализует дополнительные процедуры обработки сигналов сигнализаций CAS (R2, R1.5 и другие) при взаимодействии с контроллерами CPT-02-PCI. Данный AFE предназначен для ADSP, установленных на контроллере. |
| E-HDLC   | 118 | Enhanced High-Level Data Link Control. Предназначен для организации Multilink — до 16 соединений на одном контроллере. Данный АFE предназначен для ADSP, установленных на контроллере.                    |

| AFE     | GID | Описание                                                                                                                                                                                                                                   |
|---------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HDLC-HS | 118 | Высокоуровневый протокол управления каналом скоростной передачи данных. Предназначен для организации соединения SS7 шириной в 31 таймслот (HSpeedSS7, ITU Q.703 Annex. A). Данный AFE предназначен для ADSP, установленных на контроллере. |

# Следующие AFE могут быть реализованы на Firmware Framework (TLI-Device):

| AFE  | GID | Описание                                                                                                                                                                                                                                                                  |
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EDM  | 0   | Embedded Driver Manager. Совместно с BDDM осуществляет связь между элементами GFE и AFE и функцию управления. Не реализует функцию передачи данных MTP1 (Message Transfer Part level 1).                                                                                  |
|      |     | <b>! Внимание!</b> Присутствие этого AFE обязательно.                                                                                                                                                                                                                     |
| EMA  | 1   | Embedded MIB Agent. Совместно с BDDM обеспечивает доступ элементов AFE к функциям ATLAS [ $12$ ].                                                                                                                                                                         |
| ,,   | _   | ! <b>Внимание!</b> Присутствие этого AFE обязательно.                                                                                                                                                                                                                     |
| M2PA | 11  | MTP2 Peer-to-Peer Adaptation Layer $[19]$ . Уровень адаптации стека SIGTRAN. Обеспечивает адаптацию SCTP к MTP3, выполняет транспортную функцию.                                                                                                                          |
| MTP3 | 12  | Message Transfer Part level 3. Реализует уровень 3 подсистемы передачи сообщений МТР стека ОКС-7 (ITU Q.701 — Q.708).                                                                                                                                                     |
| L4   | 13  | Bercut Message Transfer Part Level 3 User Adaptation Layer Protocol (MTP3-UAP). Транслирует сообщения между User Part и MTP3. Используется для взаимодействия ISUP с MTP3.                                                                                                |
| SCCP | 14  | Signaling Connection Control Part. Реализует подсистему управления соединениями сигнализации стека ОКС-7 ITU (Q.711 — Q.714).                                                                                                                                             |
| NSAF | 15  | Network Services Access Function. Реализует интерфейс, обеспечивающий доступ к сети ОКС-7 через SCCP (взаимодействие SCCP с STP).                                                                                                                                         |
| M3UA | 16  | МТРЗ-User Adaptation Layer [ $21$ ]. Уровень адаптации стека SIGTRAN [ $17$ ]. Обеспечивает интерфейс между SCTP и протоколами ОКС-7, которые используют услуги МТРЗ. Например, ISUP и SCCP. Реализует клиентский и серверный варианты взаимодействия сетевых приложений. |

## Следующие AFE могут быть реализованы на Signalling Gateway:

| AFE  | GID | Описание                                                                                                                                      |
|------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| М2РА | 11  | MTP2 Peer-to-Peer Adaptation Layer [19]. Уровень адаптации стека SIGTRAN. Обеспечивает адаптацию SCTP к MTP3, выполняет транспортную функцию. |

| AFE      | GID | Описание                                                                                                                                                                                                                                                                        |
|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MTP3     | 12  | Message Transfer Part level 3. Реализует уровень 3 подсистемы передачи сообщений МТР стека ОКС-7 (ITU Q.701 — Q.708).                                                                                                                                                           |
| SCCP     | 14  | Signaling Connection Control Part. Реализует подсистему управления соединениями сигнализации стека ОКС-7 (ITU Q.711 — Q.714).                                                                                                                                                   |
| M3UA     | 16  | MTP3-User Adaptation Layer $[21]$ . Уровень адаптации стека SIGTRAN $[17]$ . Обеспечивает интерфейс между SCTP и протоколами ОКС-7, которые используют услуги МТР3. Например, ISUP и SCCP. Реализует клиентский и серверный варианты взаимодействия сетевых приложений.         |
| M3UA_CLN | 16  | МТРЗ-User Adaptation Layer [21]. Уровень адаптации стека SIGTRAN [18]. Обеспечивает интерфейс между SCTP и теми протоколами ОКС-7, которые M3UA_CLN используют услуги МТРЗ. Например, ISUP и SCCP. Реализует клиентский и серверный варианты взаимодействия сетевых приложений. |
| SUA      | 17  | Signalling Connection Control Part User Adaptation Layer [22]. Уровень адаптации стека SIGTRAN [18]. Предназначен для подключения к SCCP удаленных подсистем-пользователей, таких как TCAP и RANAP.                                                                             |

# 2. Структура STP

В составе STP можно выделить следующие функциональные модули, которые отображаются в виде соответствующих папок в структуре дерева настроек MIB:

- Точки подключения подсистем [4];
- Точки подключения к SCCP [4];
- Менеджер маршрутизации [4].

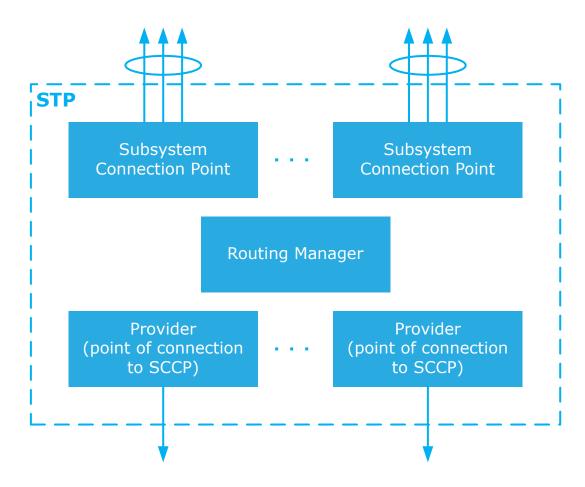



Рис. 4. Структура STP

Точки подключения подсистем — отдельные FTLB-соединения. Каждая точка подключения объединяет набор TCP-соединений с функциональными элементами одного типа, например: SCP, SMSC, USSDC, SRP, SSP и другие. Набор TCP-соединений задается в приоритетном списке адресов. Доступ к STP предоставляется с помощью компонента TCAP ASE, который является частью приложения — клиента STP. Создание соединений инициируют подсистемы.

Провайдеры доступа — точки подключения к SCCP. В качестве провайдеров доступа может использоваться TLI-FF (библиотека libtli\_ff.so). Обеспечивает взаимодействие с подсистемой SCCP, размещенной в Firmware Framework [8].

Настойки AFE, размещенных в Firmware Framework, хранятся в отдельном каталоге MIB — STP/FF [4].

Инициатором создания соединения является STP.

# 3. Функциональные возможности

## 3.1. Взаимодействие STP с внешними системами

Для выполнения определенных функций STP взаимодействует:

- с системой ATLAS для конфигурирования и протоколирования работы;
- с элементами SCCP через провайдеров для получения доступа к сети связи. Для подключения подсистем используется компонент FTLB.

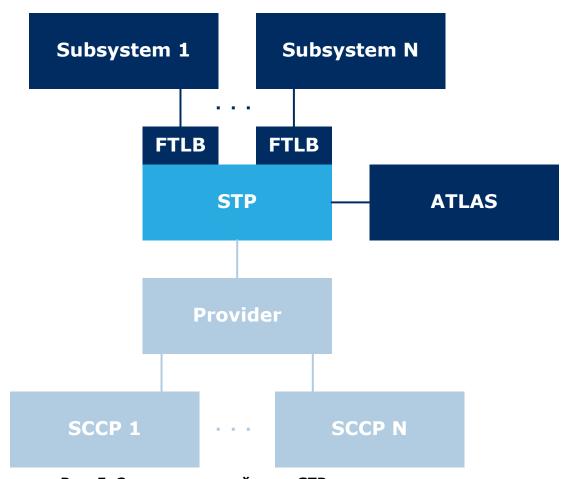



Рис. 5. Схема взаимодействия STP с внешними системами

# 3.2. Маршрутизация сообщений и трансляция адресов

## 3.2.1. Маршрутизация сообщений

STP маршрутизирует сигнальные сообщения между внешними подсистемами сети оператора связи и внутренними подсистемами уровня SEL и SAL. Маршрутизация выполняется по номеру подсистемы (SSN) и глобальному адресу (GT).

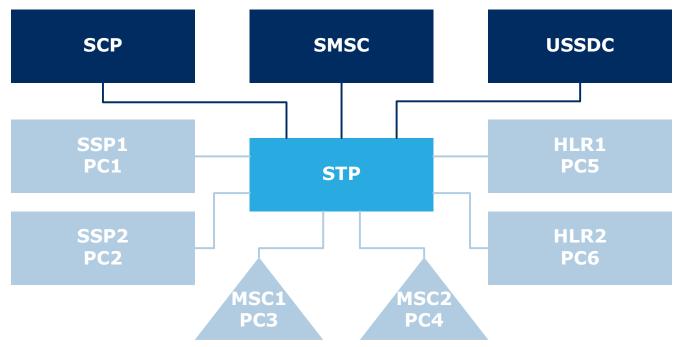



Рис. 6. Функциональные элементы уровня SEL и сети связи

#### На схеме показаны:

- функциональные элементы уровня SEL (SCP, SMSC, USSDC), которые могут быть объединены в группы;
- функциональные элементы уровня SAL (SSP, MSC, HLR), которые объединены в группы по функциональному признаку;
- STP точка доступа функциональных элементов уровня SEL к элементам уровня SAL.
- **і Примечание.** MSC и HLR элементы сети доступа оператора. Доступ к ним осуществляется с помощью функциональных элементов уровня SAL как Signalling Gateway [10], Firmware Framework [8] и BDDM [2], которые для простоты на рисунке не показаны.

Для организации резервирования и масштабирования одинаковые функциональные элементы объединяются в группы. Маршрутизация сообщений выполняется именно между группами одинаковых функциональных элементов, например, между SMSC, USSDC и MSC. При этом между членами группы маршрутизация не выполняется — выполняется только распределение нагрузки. Такое объединение для элементов SEL выполняется компонентом FTLB 1.1) и скрыто от STP.

С функциональными элементами уровня SAL дело обстоит иначе. Доступ STP к ним осуществляется с помощью элементов доступа AFE SCCP. Объединение в наборы функциональных элементов уровня SAL задается явным образом. Для каждого элемента необходимо указать код узла (PC), в котором он реализован, и SCCP для получения доступа.

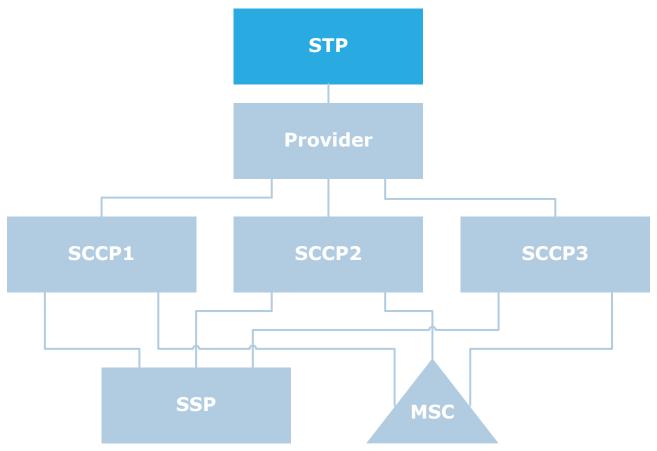



Рис. 7. Взаимодействие STP с функциональными элементами уровня SAL

Точки подключения к SCCP (провайдеры) и точки подключения подсистем (пользователи) для STP являются источниками (originators) и получателями (recipients) сообщений.

Процедуры маршрутизации сообщений и трансляции адресов объединены и выполняются за один шаг. Для этого все источники и приемники сообщений объединяются в группы источников и приемников сообщений. Целью объединения источников сообщений в группы является задание для всех членов группы одинаковых правил маршрутизации и трансляции. Объединение в группы получателей сообщений необходимо для реализации маршрутизации и трансляции, поскольку источник сообщений может маршрутизировать их только между группами получателей: распределение сообщений внутри группы получателей скрыто от него.

В зависимости от класса услуг, предоставляемых подсистемой SCCP, используются следующие стратегии распределения сообщений между членами группы:

- Класс 0: услуги без создания сигнального соединения, без контроля очередности доставки (поле *Sequence-control* не задано). Сообщения распределяются пропорционально заданным для членов группы коэффициентам Load index [4];
- Класс 1: услуги без создания сигнального соединения, с контролем очередности доставки (поле *Sequence-control* задано). Сообщения равномерно распределяются между всеми членами группы.

## 3.2.2. Формирование групп получателей сообщений

Формирование групп получателей сообщений выполняется из содержимого группы Recipients groups [4] дерева МІВ, подразделы которого задают данные группы.

Вы можете задавать произвольные имена подразделов в рамках требований системы ATLAS MIB Explorer [13]).

**Примечание.** Имя «STP» нельзя присвоить ни одному из подразделов корневого раздела <STP> любого уровня вложенности.

Структура подразделов показана на рисунке.

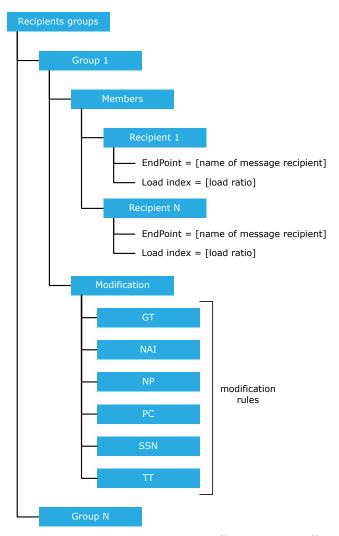



Рис. 8. Группы получателей сообщений

В каждой группе получателей сообщений должно быть две подгруппы: Members и Modification.

Группа Members [4] содержит одну или несколько подгрупп с произвольными именами. В этой группе задаются члены данной группы получателей сообщений. Также каждая подгруппа, задающая члена группы получателей сообщений, должна содержать два параметра. Параметр EndPoint задает конкретного получателя сообщений с точки зрения STP. Значение данного параметра может представлять собой имя подсистемы или строку следующего вида: <имя\_точки\_подключения\_к\_SCCP>:<код\_точки>. Например, SCP или SCCP\_1:13322.

Параметр Load index задает коэффициент распределения нагрузки [4].

Если Load index > 0, то при наличии в данной группе получателей сообщений более одного получателя нагрузка между членами группы распределяется пропорционально данному коэффициенту.

При Load index = 0:

- если в данной группе доступен хотя бы один другой получатель, у которого коэффициент отличен от нуля, то рассматриваемый получатель вообще не участвует в распределении нагрузки остается в резерве;
- если в данной группе недоступны все получатели с коэффициентами, отличными от нуля, нагрузка равномерно распределяется между всеми доступными получателями данной группы, у которых значение коэффициента равно нулю;
- если становится доступен хотя бы один получатель с коэффициентом, отличным от нуля, все получатели с нулевым коэффициентом снова переходят в неиспользуемый резерв.

В группе Modification задаются правила модификации адресных параметров SCCP-сообщений. Она содержит две подгруппы:

- Called party number задает модификацию номера вызываемой стороны;
- Calling party number задает модификацию номера вызывающей стороны.

Каждая из данных групп, в свою очередь, содержит следующие подгруппы, в которых задаются правила модификации:

- GT (Global Title address information)
- NAI (Nature of Address Indicator)
- NP (Numbering Plan)
- PC (Point Code)
- SSN (SubSystem Number)
- TT (Translation Type).
- **Примечание.** Модификация параметров выполняется компонентом Bercut String Converter [11].

Правило модификации задается с помощью параметра с целочисленным именем. Диапазон: от '0' до '254'. Значение параметра представляет собой строку следующего формата:

<входная маска> = <выходное значение>

Длина данной строки не может превышать 254 символов.

Модификация выполняется следующим образом:

- 1. Нужный параметр адреса преобразуется в строку. Если параметр необязательный и отсутствует в обрабатываемом сообщении, то результат преобразования пустая строка ("");
- 2. Полученная строка передается в Bercut String Converter;
- 3. Bercut String Converter конвертирует полученную строку:
  - Если конвертация выполнена, то строка-результат преобразуется в нужный тип данных, в зависимости от параметра, и вставляется в адрес обрабатываемого сообщения;
  - Если размер строки-результата равен '0' (пустая строка, ""), и обрабатываемый параметр опциональный, то этот параметр удаляется из адреса.
- **Примечание.** Вы можете создавать и удалять группы получателей сообщений в процессе работы STP. При этом необходимая структура групп обязательные подгруппы и переменные автоматически создается STP. Необходимо лишь задать требуемые значения.

## 3.2.3. Формирование групп источников сообщений

Формирование групп источников сообщений выполняется из содержимого группы  $Originators\ groups\ [4]\ MIB-параметров. Вы можете задавать произвольные имена подразделов в рамках требований системы ATLAS MIB Explorer <math>[13]$ ).

**Примечание.** Имя «STP» нельзя присвоить ни одному из подразделов корневого раздела <STP> любого уровня вложенности.

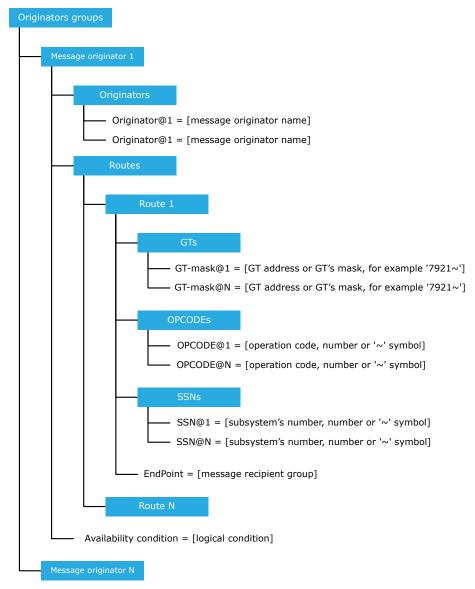



Рис. 9. Группы источников сообщений

### На рисунке:

- message originator name имя точки подключения к SCCP (провайдера) или точки подключения подсистемы (имя группы в MIB, содержащей ее настройки);
- **GT address or GT's mask** адрес GT целиком или маска адреса GT. Символ '~' означает произвольное количество любых цифр. Если ему предшествует хотя бы одна цифра, то он может быть опущен;
- operation code код операции (сообщения), может быть числом или символом  $'\sim'$  (любое число);

- **subsystem's number** номер подсистемы, может быть числом или символом '~' (любое число);
- message recipient group имя MIB-группы получателей сообщений в , в которую будут передаваться все сообщения, содержащие комбинации адресных параметров, задаваемые содержимым разделов SSNs, OPCODEs и GTs;
- logical condition логическое выражение, значение которого определяет способность группы выполнять функции маршрутизации. В качестве параметров используются названия групп получателей сообщений, в качестве логических операторов символы '&' (логическое «И») и '|' (логическое «ИЛИ»), например №С-1 & №С-2. Значения параметров отражают текущее состояние соответствующих групп получателей сообщений (доступна или недоступна). О факте изменения значения логического выражения сообщается всем источникам сообщений, входящим в данную группу. Точки подключения к SCCP (провайдеры) этот факт игнорируют, а точки подключения подсистем используют как критерий для принятия решения: разрывать или нет соединение с подсистемой.
- **Примечание.** Если группа источников сообщений создается при работающем STP, то обязательные подразделы и параметры автоматически создаются STP.

# 3.3. Распределение сообщений в подсистеме

### Для сообщений ITU-T Q.77x (TCAP)

При подключении к STP каждое приложение сообщает STP свой идентификатор в сообщении OpenReq. В дальнейшем подключенное приложение при назначении Originating transaction ID (OTID) заполняет старший байт OTID этим идентификатором. Соответственно, при отправке сообщений TC\_CONTINUE, TC\_END, TC\_ABORT выбор приложения внутри подсистемы, которому следует отправить данное сообщение, осуществляется по идентификатору, выделенному из старшего байта параметра Destination transaction ID. Если нужное приложение в данный момент недоступно, то сообщение TC\_CONTINUE отправляется одному из подключенных приложений — по выбору FTLB. Остальные сообщения игнорируются.

Распределением всех остальных сообщений занимается FTLB в соответствии со своими настройками.

### Для сообщений ANSI T1.114-1996 (TCAP)

При подключении к STP каждое приложение сообщает STP свой идентификатор — в сообщении OpenReq. Затем подключенное приложение при назначении Originating transaction ID (OTID) заполняет старший байт OTID этим идентификатором. При отправке сообщений Response, ConversationWithPermission, ConversationWithoutPermission, Abort приложению в подсистеме оно выбирается по идентификатору, выделенному из старшего байта параметра Destination transaction ID. Если нужное приложение в данный момент недоступно, то сообщения СоnversationWithPermission, conversationWithoutPermission отправляются одному из подключенных приложений — по выбору FTLB. Остальные сообщения игнорируются.

Распределение сообщений QueryWithPermission, QueryWithoutPermission, Unidirectional:

- На основе параметра billingID::IDNumber, если он содержится в обрабатываемом сообщении (Query, Unidirectional) для операций с кодами 47, 64, 75, 76, 80, 82, 83, 85, 86, 88, 89;
- По правилам, определяемым FTLB.

На схеме показано распределение по billingID::IDNumber:

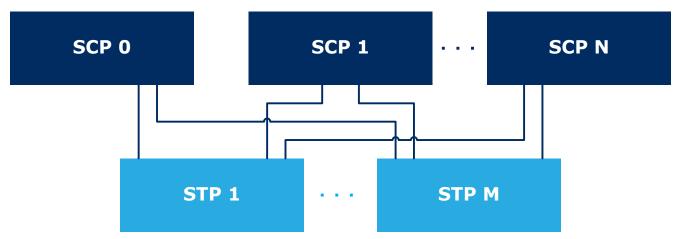



Рис. 10. Схема взаимодействия SCP и STP

- 1. Вычисляется остаток от деления N = billingID::IDNumber / (n + 1), где знаменатель общее количество SCP. Если SCP N доступен, сообщение отправляется на него.
- 2. Если SCP N недоступен, вычисляется остаток от деления K = billingID::IDNumber / (k+1), где знаменатель количество доступных SCP. После этого сообщение отправляется на SCP K.

При отключении одного из SCP:

- 1. Все сообщения, предназначенные именно этому SCP (определяется по responding TID), будут проигнорированы.
- 2. Все новые транзакции (Query) и сообщения Unidirectional будут распределены между активными SCP.

При включении ранее выключенного SCP новые транзакции (Query) и сообщения Unidirectional будут распределяться и на этот SCP.

Если последовательно открывается несколько транзакций и отправляются сообщения типа Unidirectional, то в моменты выключения и включения SCP могут возникнуть ситуации, когда разные транзакции и сообщения Unidirectional, предназначенные для сервиса, отправляются на разные SCP.

# 3.4. Параллельная обработка сообщений

Каждая конечная точка параллельно обрабатывает входящие сообщения с целью увеличения пропускной способности на серверах с одним и несколькими процессорами.

Последовательность параллельной обработки:

- 1. После приема сообщение перекладывается в очередь одного из потоков для обработки. Выбор потока выполняется по принципу LO\_ROUND.
- 2. Сообщение в отдельном потоке декодируется и отправляется на маршрутизацию. Маршрутизация, преобразование и отправка сообщений организованы так, чтобы потоки не пересекались.
- 3. Для сообщений, последовательная обработка которых имеет критическое значение (continue/end/abort одной транзакции), выбор потока выполняется на основе DTID транзакции.
- 4. При переполнении хотя бы одной из очередей потоков отправляются управляющие сообщения XOFF/congested, и прием сообщений прекращается. Эта процедура

называется HardFreeze. При разгрузке всех очередей отправляются управляющие сообщения XON/accessible, и прием сообщений возобновляется.

Настройка потоков в MIB выполняется в группах [4].

# 4. Установка STP

**Примечание.** Распаковывайте архив только на машине под управлением OC Linux. Иначе — ссылки для библиотек могут быть проинтерпретированы некорректно.

### Порядок установки:

- 1. Создайте на сервере каталог для STP. Например: opt/BERCstp/bin.
- 2. Скопируйте дистрибутив stp-2.8-solaris-x64-release.zip в созданный каталог.
- 3. Распакуйте архив с помощью команды:

unzip stp-2.8-solaris-x64-release.zip

# 5. Настройка STP

### Порядок настройки:

- 1. Перейдите в MIB-группу STP/Configuration. Задайте значение параметра Server address порт STP, к которому подключаются подсистемы.
- 2. Добавьте MIB-группы ЕЕ и FF в корневую группу STP. Скопируйте их с уже настроенной машины или с помощью импорта MIB-настроек.
- 3. Настройте провайдеров и пользователей.
- 4. Настройте подключения.
- 5. Настройте маршрутизацию.
  - 5.1. Настройте группы получателей сообщений.
  - 5.2. Настройте группы источников сообщений.
- **і Примечание.** Настройка систем и компонентов заключается в конфигурировании их параметров в MIB-редакторе приложения MIB Explorer [13]. Подробное описание MIB-параметров STP [4].

# 5.1. Настройка провайдеров и пользователей

### Порядок настройки:

- 1. Добавьте в MIB-группу STP/Security/Providers подгруппы провайдеров с произвольными именами.
- 2. В каждой подгруппе провайдера задайте значения параметров:
  - Own Point Code—код точки сигнализации SCCP, с которой выполняется взаимодействие;
  - Address—адрес для подключения провайдера к элементам, которые обеспечивают доступ к SCCP. Формат адреса: <ProviderType>: // <DID>:<GID>:<LID> /<appname>/<path>, где:
    - ProviderType—протокол доступа;
    - DID—не имеет значения. В трейсах отображаются значения от 16 (0x10) до 47 (0x2F);
    - GID—глобальный идентификатор. Интерфейс доступа к телекоммуникационной сети для STP;
    - LID—локальный идентификатор. Идентификатор экземпляра подсистемы внутри определенного типа. Например, для SCCP@0 LID равен 0;
    - аррпате—имя приложения;
    - path—путь к МІВ-настройкам.

Пример: ff://70.15.0-/STP/FF.

- 3. Добавьте в MIB-группу STP/Security/Users подгруппы пользователей с произвольными именами.
- 4. В каждой подгруппе пользователя создайте параметр или параметры вида Name@<User\_name>, где User\_name идентификатор, по которому будет выполняться обращение к FEAM на SCP подсистем. Присвойте параметру значение формата: IP-адрес:порт@вес. Вес—это FTLB-вес соединения. Меньшее значение веса означает меньший приоритет соединения. Параметр необходим для авторизации соединений.

## 5.2. Настройка подключений

### 5.2.1. Настройка М2РА и МТРЗ

### Порядок настройки:

- 1. Перейдите в MIB-группу STP/FF/MTP3/MTP3@N/Configuration/Local point. Для каждого экземпляра подсистемы MTP3 MTP3@<LID> задайте значение параметра PC код локального пункта сигнализации в сети SS7.
- 2. Перейдите в MIB-группу STP/FF/MTP3/MTP3@<LID>/Links. Для каждого экземпляра подсистемы MTP3 создайте два Link@N для каждого соединения с другим пунктом сигнализации. Один из них используется в качестве клиента, другой в качестве сервера. Задайте значения MIB-параметров:
  - Adjacent point code номер смежного пункта сигнализации в сети SS7, с которым устанавливается соединение;
  - *Target number* номер звена сигнализации в данном контроллере.
- 3. Перейдите в MIB-группу STP/FF/M2PA и для каждого Link@N создайте соединение M2PA@N, где N значение параметра Target number для Link@N. В каждой MIB-группе STP/FF/M2PA/M2PA@<LID>/Configuration/M2PA задайте значения MIB-параметров:
  - Active connection роль локального процесса при установке соединения:
    - True клиент;
    - False сервер.
  - Local address IP-адрес локального процесса M2PA. Формат: Префикс (имя транспортной библиотеки sctp)://IP-адрес:порт.
  - Remote address адрес удаленной системы. Формат: IP-адрес: порт.
- 4. Перейдите в MIB-группу STP/FF/MTP3/MTP3@<LID>/Points. Для каждого экземпляра подсистемы MTP3 создайте MIB-группы Point@N. Задайте значение параметра Point code код удаленного пункта сигнализации, с которым взаимодействует данный экземпляр подсистемы MTP3. Значение данного параметра должно совпадать со значением параметра STP/FF/MTP3/MTP3@<LID>/ Links/Adjacent point code.
- 5. Перейдите в MIB-группу STP/FF/MTP3/MTP3@<LID>/Routes. Для каждого экземпляра подсистемы MTP3 создайте MIB-группы Route@N. Задайте значения MIB-параметров:
  - Adjacent point code номер смежного пункта сигнализации в сети SS7, через который проходит маршрут. Если смежный и конечный пункт совпадают, значения параметров Adjacent point code и Destination point code могут совпадать. Значение параметра должно совпадать со значением параметров STP/FF/MTP3/MTP3@<LID>/Links/Adjacent point code и STP/FF/MTP3/MTP3@<LID>/Points/Point code;
  - Destination point code номер конечного пункта сигнализации маршрута.
- 6. Перейдите в MIB-группу STP/FF. Для каждого экземпляра подсистемы MTP3 MTP3@<LID> создайте экземпляр подсистемы SCCP SCCP@<LID>. Значения локальных идентификаторов должны совпадать. В группе STP/FF/SCCP/SCCP@<LID>/Points/Point@N задайте значение параметра Point code код удаленного пункта сигнализации в сети SS7. Оно также должно совпадать со значением параметра STP/FF/MTP3/MTP3@<LID>/Links/Adjacent point code.
- 7. Перейдите в MIB-группу /STP/FF/SCCP/SCCP@<LID>/Configuration/Local point. Для каждого экземпляра подсистемы задайте значение параметра Point code код локального пункта сигнализации. Значение параметра должно быть равно коду

пункта сигнализации экземпляра подсистемы MTP3, с которым взаимодействует данный экземпляр подсистемы SCCP.

### 5.2.2. Настройка M3UA

### Порядок настройки:

- 1. Перейдите в MIB-группу STP/FF/M3UA/M3UA@<LID>/Configuration. Для каждого экземпляра подсистемы M3UA M3UA@<LID> задайте значение параметра PC код локального пункта сигнализации в сети SS7.
- 2. Перейдите в MIB-группу STP/FF/M3UA/M3UA@<LID>/Links. Для каждого экземпляра подсистемы M3UA создайте два Link@N для каждого соединения с другим пунктом сигнализации. Один из них используется в качестве клиента, другой в качестве сервера. Задайте значения MIB-параметров:
  - Active connection роль локального процесса при установке соединения:
    - True клиент;
    - False сервер.
  - Adjacent point code номер смежного пункта сигнализации в сети SS7, с которым устанавливается соединение;
  - Local address IP-адрес локального процесса M2PA. Формат: Префикс (имя транспортной библиотеки sctp)://IP-адрес:порт.
  - Remote address адрес удаленной системы. Формат: IP-адрес: порт.
- 3. Перейдите в MIB-группу STP/FF/M3UA/M3UA@<LID>/Points. Для каждого экземпляра подсистемы M3UA создайте MIB-группы Point@N. Задайте значение параметра Point code код удаленного пункта сигнализации, с которым взаимодействует данный экземпляр подсистемы M3UA. Значение данного параметра должно совпадать со значением параметра STP/FF/M3UA/M3UA@<LID>/Links/Adjacent point code.
- 4. Перейдите в MIB-группу STP/FF/M3UA/M3UA@<LID>/Routes. Для каждого экземпляра подсистемы M3UA создайте MIB-группы Route@N. Задайте значения MIB-параметров:
  - Adjacent point code номер смежного пункта сигнализации в сети SS7, через который проходит маршрут. Если смежный и конечный пункт совпадают, значения параметров Adjacent point code и Destination point code могут совпадать. Значение параметра должно совпадать со значением параметров STP/FF/M3UA/M3UA@<LID>/Links/Adjacent point code и STP/FF/M3UA/M3UA@<LID>/Points/Point code;
  - Destination point code номер конечного пункта сигнализации маршрута.
- 5. Перейдите в MIB-группу STP/FF. Для каждого экземпляра подсистемы M3UA M3UA@<LID> создайте экземпляр подсистемы SCCP SCCP@<LID>. Значения локальных идентификаторов должны совпадать. В группе STP/FF/SCCP/SCCP@<LID>/Points/Point@N задайте значение параметра Point code код удаленного пункта сигнализации в сети SS7. Оно также должно совпадать со значением параметра STP/FF/M3UA/M3UA@<LID>/Links/Adjacent point code.
- 6. Перейдите в MIB-группу /STP/FF/SCCP/SCCP@<LID>/Configuration/Local point. Для каждого экземпляра подсистемы задайте значение параметра Point code код локального пункта сигнализации. Значение параметра должно быть равно коду пункта сигнализации экземпляра подсистемы M3UA, с которым взаимодействует данный экземпляр подсистемы SCCP. Поставьте флаг Use M3UA.

# 5.3. Настройка маршрутизации

## 5.3.1. Настройка групп получателей сообщений

### Порядок настройки:

- 1. В группе STP/Configuration/Routing/Recipient groups создайте подгруппы получателей сообщений с произвольными именами <Group\_name>.
- 2. В группе /STP/Configuration/Routing/Recipients groups/<Group\_name>/ Members/ создайте подгруппы конечных получателей сообщений с произвольными именами <Member group>.
- 3. В группах /STP/Configuration/Routing/Recipients groups/<Group\_name>/ Members/<Member\_group> задайте значение параметра EndPoint в формате: <имя точки подключения к SCCP>:<код точки>. Если получателем является подсистема, то в значении параметро должно быть задано наименование группы подсистемы / STP/Security/Users/<User\_name>.

## 5.3.2. Настройка групп источников сообщений

### Порядок настройки:

- 1. В MIB-группе /STP/Configuration/Routing/Originators groups/ создайте подгруппы маршрутизации <Group name>.
- 2. В MIB-группах /STP/Configuration/Routing/Originators groups/<Group\_name>/ Originators создайте параметр вида Originator@n, где n это порядковый номер источника сообщений. Значение должно содержать название группы провайдера /STP/Security/Providers/<Provider\_name> или подсистемы /STP/Security/Users/<User name>.
- 3. В MIB-группах /STP/Configuration/Routing/Originators groups/<Group\_name>/ Routes/ создайте параметр RecipientGroup. В качестве значения параметра задайте название группы получателей сообщений /STP/Configuration/Routing/ Recipients groups/<Group name>.
- 4. В MIB-группах /STP/Configuration/Routing/Originators groups/<Group\_name>/ Routes/<Router\_group>/GTs/ добавьте параметры вида GT-mask@n, где n это порядковый номер маски, начиная с 1. Значение должно содержать GT получателя, сообщения для которого должны быть отправлены по текущему маршруту, либо символ  $\sim$  для любого значения.
- 5. В MIB-группах /STP/Configuration/Routing/Originators groups/<Group\_name>/ Routes/<Router\_group>/SSNs/ добавьте параметры вида SSN@n, где n- это порядковый номер маски. Значение параметра должно содержать код посистемы, сообщения для которой должны быть отправлены по текущему маршруту, либо символ  $\sim$  для любого значения.

# Источники информации

- 1. Ехрега. Общее описание.
- 2. Expera. Bercut Device Driver Manager. Руководство администратора.
- 3. Expera. SCP. Руководство администратора.
- 4. Expera. STP. MIB-параметры. Справочник.
- 5. Expera. Узел коммутации услуг Service Switching Point. Руководство администратора.
- 6. Expera. Узел специализированных ресурсов Specialized Resource Point. Руководство администратора.
- 7. Expera. Узел хранения данных услуг Service Data Point. Руководство администратора.
- 8. Expera. Firmware Framework. Руководство администратора.
- 9. Expera. Контроллер СРТ-02-РСІ. Руководство администратора.
- 10. Expera. Signaling Gateway. Руководство администратора.
- 11. Expera. Bercut String Converter. Руководство администратора.
- 12. Ехрега. Общее описание.
- 13. ATLAS. Приложение ATLAS MIB Explorer. Руководство администратора.
- 14. ATOMS. Подсистема ATOMS Kernel. Руководство администратора.
- 15. ATOMS. Подсистема ATOMS System Info Suite. Руководство администратора.
- 16. ATOMS. Подсистема ATOMS Alarm Center Suite. Руководство администратора.
- 17. RFC 2719. Framework Architecture for Signaling Transport.
- 18. RFC 2960. Stream Control Transmission Protocol.
- 19. RFC 4165. Signaling System 7 (SS7) Message Transfer Part 2 (MTP2) User Peer-to-Peer Adaptation Layer (M2PA).
- 20. RFC 3331. Signaling System 7 (SS7) Message Transfer Part 2 (MTP2) User Adaptation Layer
- 21. RFC 3332. SS7 Message Transfer Part 3 (MTP3) User Adaptation Layer (M3UA).
- 22. RFC 3868. Signalling Connection Control Part User Adaptation Layer (SUA).
- 23. *ITU-T Q.704*
- 24. ITU-T Q.752

# История изменений

В разделе представлена история изменений документа.

### Изменения с версии 2.6 до 2.7

### Версия документа 1:

- 1. Дополнен справочник МІВ-параметров.
- 2. Добавлен раздел 1.2.

### Версия документа 2:

- 1. Добавлены MIB-группы STP/Security/Providers/<Provider>/Mirror, STP/Startup, STP/Converter, STP/Status & Control/Status/Originators groups, STP/Status & Control/Status/Recipients groups.
- 2. В раздел «Группа Recipients groups» добавлена переменная *Use special distribution mode*.
- 3. В раздел «Группа <Provider>» добавлены переменные Expected rays, IsCongested, Pc@<Number>, <IP>:<port>, <IP>:<port> IsHwm.

### Версия документа 3:

- 1. Добавлены МІВ-группы:
  - STP/FF/M2UA;
  - STP/FF/MTP3;.
  - STP/FF/SG\_M3UA.
- 2. Добавлены трейсовые сообщения:
  - «Сообщения M2UA».
  - «Сообщения МТРЗ».
  - «Сообщения SG M3UA».

### Версия документа 4:

### Добавлены группы:

- STP/Security/Users/<User>;
- STP/Security/Users/<User>/Buffers;
- STP/Security/Users/<User>/Threads.

### Версия документа 5:

- 1. Расширено описание параметра *GT-mask@<n>* группы *<STP>/Configuration/Routing/Originators groups/<group>/Routes/<route>/GTs*.
- 2. В группу STP/Security/Users/<User> добавлен параметр Advanced WSMS mode;
- 3. Добавлена группа STP/Status & Control/Control/<User>.
- 4. Добавлена группа STP/Status & Control/Status/<User>.
- **5. Изменено описание параметра** *Deactivate* группы STP/FF/M3UA/<LID>/Links/Link@<n>/Status & Control/Action/.

### Версия документа 6:

В рамках задачи 238001 «Снижение сигнальной нагрузки на HP STP» внесены следующие изменения:

- 1. В раздел *Формирование групп источников сообщений* добавлено описание группы параметров *OPCODEs*, используемых при маршрутизации сообщений.
- 2. Описание MIB-параметров узла STP вынесено в отдельный справочник [4].

### Изменения с версии 2.7 до 2.8

Версия документа 1:

В рамках запроса 246690 внесены следующие изменения:

- 1. Добавлен раздел  $\Phi$ ункциональные возможности в него перенесены разделы, которые относятся к функциональным возможностям STP.
- 2. Добавлен раздел *Настройка STP*.
- 3. Удален раздел Администрирование системы.